Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract For decades, community ecologists have examined how diversity varies with ecosystem productivity. Despite this long history, tests of hypothesized mechanisms, namely the interplay between environmental filtering, biotic interactions, and dispersal, are lacking, largely due to the intractability of using traditional approaches. Across a productivity gradient in a serpentine grassland (California, USA), for four annual plant species, we coupled local productivity estimates, occupancy surveys, and measures of persistence tested on transplants under natural conditions and when interactions with neighbors were experimentally reduced. We found a positive effect of productivity on diversity (i.e., the proportion of our focal species occupying a location) despite strong competition limiting species persistence in productive environments. Additionally, across species and for the community, we found a strong mismatch between species occupancy versus persistence, largely due to dispersal excess causing sink populations with negative growth rates. Our results suggest that diversity–productivity relationships can be largely driven by dispersal and its interactive effects with local biotic and abiotic conditions.more » « less
-
ABSTRACT With many species interacting in nature, determining which interactions describe community dynamics is nontrivial. By applying a computational modeling approach to an extensive field survey, we assessed the importance of interactions from plants (both inter‐ and intra‐specific), pollinators and insect herbivores on plant performance (i.e., viable seed production). We compared the inclusion of interaction effects as aggregate guild‐level terms versus terms specific to taxonomic groups. We found that a continuum from positive to negative interactions, containing mostly guild‐level effects and a few strong taxonomic‐specific effects, was sufficient to describe plant performance. While interactions with herbivores and intraspecific plants varied from weakly negative to weakly positive, heterospecific plants mainly promoted competition and pollinators facilitated plants. The consistency of these empirical findings over 3 years suggests that including the guild‐level effects and a few taxonomic‐specific groups rather than all pairwise and high‐order interactions, can be sufficient for accurately describing species variation in plant performance across natural communities.more » « less
-
Global change drivers alter multiple components of community composition, with cascading impacts on ecosystem stability. However, it remains largely unknown how interactions among global change drivers will alter community synchrony, especially across successional timescales. We analysed a 22‐year time series of grassland community data from Cedar Creek, USA, to examine the joint effects of pulse soil disturbance and press nitrogen addition on community synchrony, richness, evenness and stability during transient and post‐transient periods of succession. Using multiple regression and structural equation modelling, we found that nitrogen addition and soil disturbance decreased both synchrony and stability, thereby weakening the negative synchrony–stability relationship. We found evidence of the portfolio effect during transience, but once communities settled on a restructured state post‐transience, diversity no longer influenced the synchrony–stability relationship. Differences between transient and post‐transient drivers of synchrony and stability underscore the need for long‐term data to inform ecosystem management under ongoing global change.more » « less
-
While community synchrony is a key framework for predicting ecological constancy, the interplay between community synchrony and ecological invasions remains unclear. Yet the degree of synchrony in a resident community may influence its resistance and resilience to the introduction of an invasive species. Here we used a generalizable mathematical framework, constructed with a modified Lotka–Volterra competition model, to first simulate resident communities across a range of competitive strengths and species' responses to environmental fluctuations, which yielded communities that ranged from strongly synchronous to compensatory. We then invaded these communities at different timesteps with invaders of varying demographic traits, after which we quantified the resident community's susceptibility to initial invasion attempts (resistance) and the degree to which community synchrony was altered after invasion (resiliency of synchrony). We found that synchronous communities were not only more resistant but also more resilient to invasion than compensatory communities, likely due to stronger competition between resident species and thus lower cumulative abundances in compensatory communities, providing greater opportunities for invasion. The growth rate of the invader was most influenced by the resident and invader competition coefficients and the growth rate of the invader species. Our findings support prioritizing the conservation of compensatory and weakly synchronous communities which may be at increased risk of invasion.more » « less
An official website of the United States government

Full Text Available